News on Gamma-Ray Line Studies with SPI/INTEGRAL
- Observations and their Interpretations -

Massive Stars and ^{26}Al
Supernovae and ^{60}Fe

...with the SPI/INTEGRAL Team:
H. Halloin, K. Kretschmer, W. Wang, A. Strong (MPE),
J. Knödlseder, P. Jean, G. Weidenspointner (CESR), S. Schanne (CEA),
B. Teegarden, S. Sturner (GSFC),
C. Wunderer (SSL-UCB), ...
The Sky at 1809 keV: ^{26}Al
The Sky at 1809 keV: 26Al

The Complete CGRO Mission
(Plüschke et al. 2001)
Ejection and Slowing-Down of 26Al from Sources

- 26Al Ejected into Hot Cavities (WR Winds, ...)
 -> ISM Turbulence <-> Line Width
- 26Al Condensed on Dust, Re-accelerated -> High-Velocity Tail?
 $^\text{‡}$ Chen et al. 1997; Sturmer & Naya 1999

Galactic Rotation

- 26Al Sources
 in Spiral Arms, Along Line-of-Sight
 -> 26Al Source Location Along LoS
 $^\text{‡}$ Gehrels et al. 1996; Kretschmer et al. 2003

<CARINA Meeting, Aiguablava (E), Jun 8-10, 2005>
26Al Line Width: Velocity of 26Al in ISM

☆ Broad Line was Difficult to Understand
★ 26Al on Dust?
★ Huge ISM Cavities?
★ Chen et al. 1997

☆ Issue Dissappeared?
^{26}Al in the Cygnus Region

- Well-Confined Candidate Sources
 - 9 OB Associations
 - Special: Cyg OB2

- Test Laboratory for Age Discrimination of Sources

- Plüschke et al., 2001; Cerviño et al. 2002

Flux : $(7.2 \pm 1.8) \times 10^{-5}$ ph cm$^{-2}$ s$^{-1}$
Position : 1808.4 ± 0.3 keV $\Rightarrow v_{\text{rad}} = -41 \pm 50$ km s$^{-1}$
Width : 3.3 ± 1.3 keV $\Rightarrow \Delta v = 550 \pm 210$ km s$^{-1}$
SPI's Inner Galaxy Survey

INTEGRAL Core Program: “GCDE”

Inner-Galaxy Observing Times:

- GCDE1: ~1 Msec
- GCDE1+2: ~3.6 Msec
- Rev15-259 ~14 Msec

Line Shape now Constrained to ~Instrumental, Intrinsic ~x keV

<CARINA Meeting, Aiguablava (E), Jun 8-10, 2005>

Roland Diehl
High-Resolution Spectroscopy with SPI

- Cosmic-Ray Damage of Charge Collection
 - Annealings
- Time-Variable Response

K. Kretschmer et al.
Spectra for Diffuse Emission

Coded-Mask Shadowing ~ Fuzzy
Spectra from Sky Model Fitting

- Line Shape Model:
 - Cumulative (degraded/distorted) Instrumental
 - Celestial (broadened?)

Data:
- Orbits 15-259 (1.5y)
- 16 Ms
- 4Ms at GC

\[E = 1808.77 \pm 0.20 \]
\[FWHM = 1.16 \pm 0.77 \]
\[I = 3.29 \pm 0.38 \]
The 26Al Line is “Narrow” (~instrumental width)

- SPI: 0.2...1.2 keV
- <2.8 keV
- ISM velocities 25...150 km s$^{-1}$
Galactic Rotation and the 26Al Line

- **Galactic Rotation Affects the Line Centroid ~as Expected**
 - Consolidation: These sources are NOT Localized
 - Basis for GALACTIC 26Al Amount Determination using geometrical / tracer models

- **Observed (small) Line Broadening from Inner Galaxy Consistent with an Intrinsically-Narrow Line**
26Al in the Galaxy

- Line Broadening is not “unusual”
 - Determine line width for Regions of Different Cluster Ages
- 26Al Emission from inner Galaxy
 - Study Galactic Star-Formation/Massive-Star Population

<CARINA Meeting, Aiguablava (E), Jun 8-10, 2005>
60Fe Detections
with RHESSI & SPI/INTEGRAL

RHESSI

- 2.6σ Detection
- $I = 0.91 \pm 0.31 \times 10^{-4}$ ph cm$^{-2}$ s$^{-1}$

 Smith 2004

SPI

- 3σ Detection
- $I = 0.4 \pm 0.2 \times 10^{-4}$ ph cm$^{-2}$ s$^{-1}$

 Harris et al. 2005
Two Radioactivities from Massive Stars:
^{26}Al and ^{60}Fe

Production Sites
- Hydrostatic Core & Shell Burning
- Explosive Burning

Ejection
- (Late) Wind Phases ($\frac{dM}{dt} \sim 10^{10} \times \text{solar}$)
- SN Explosion

Main Processes
- $^{25}\text{Mg}(p,\gamma)^{26}\text{Al}$ H burning
- $^{58}\text{Fe}(n,\gamma)^{59}\text{Fe}(n,\gamma)^{60}\text{Fe}$ n capture

Net Yields?
- 0.7 ($25M_\odot$) ... 1.8 ($80M_\odot$) (e.g. Chieffi & Limongi 2005)

ISM Yield Ratios?
- 0.14 (GCE Model) (e.g. Timmes et al. 1995)

<CARINA Meeting, Aiguablava (E), Jun 8-10, 2005>
Updated Massive-Star Synthesis (^{26}Al, ^{60}Fe)

- Follow Stellar Evolution Consistently
 - Hydrodynamic Structure Evolution
 - Nuclear Energy Generation
 - Mass Loss Phases
 - Supernova Progenitor and Explosion
- Calculate a Complete Set of Stars (Mass Range)
 - Find Structural Discontinuities (Shell Burning; NS/BH; WR)
 - Cover IMF Range Well

Woosley et al. 2005
The 60Fe Puzzle

\begin{itemize}
 \item No Source Would Bring the 60Fe/26Al Gamma-Ray Intensity Ratio Close to Measurement Constraints! (\textasciitilde{}Factor 3...5!)
 \item Model Sample Statistics (LC)?
 \item SN not a Significant 26Al Source?
 \item Nuclear Physics?
\end{itemize}

Uncertainties:
- n Capture Cross Sections for Fe Isotopes 59Fe, 60Fe
- β Decay Rate for 59Fe
- Development of Hot-Base He Shell, C Shell
- n Source Activation

\textless{}CARINA Meeting, Aiguablava (E), Jun 8-10, 2005\textgreater{}
Core-Collapse Supernovae: ^{44}Ti from Cas A

^{44}Ti Decay: $\tau \approx 89\text{y}$

Difficult γ-Ray Region (78, 68, 1157 keV)

\rightarrow ^{44}Ti Ejected Mass

\rightarrow Young SNR

\rightarrow Uncertain $I_\gamma \approx 2.5 \times 10^{-5}$

$\sim 1-2 \times 10^{-4} M_\odot$

Detections:
- Iyudin et al. 1994: COMPTEL 1.157 MeV
- Vink et al. 2001, 2005:
 - SAX & IBIS 68/78 keV
 - Comparable Upper Limits by RXTE, OSSE
 - Hints for Broad Line from SPI (Vink 2005)

^{44}Ti from Cas A

Ti from Cas A

^{44}Ti Decay: $\tau \approx 89\text{y}$, EC

\rightarrow Young SNR

\rightarrow Uncertain $I_\gamma \approx 2.5 \times 10^{-5}$

$\sim 1-2 \times 10^{-4} M_\odot$

Detections:
- Iyudin et al. 1994: COMPTEL 1.157 MeV
- Vink et al. 2001, 2005:
 - SAX & IBIS 68/78 keV
 - Comparable Upper Limits by RXTE, OSSE
 - Hints for Broad Line from SPI (Vink 2005)
Summary: Gamma-Ray Line News from SPI

- 26Al line is moderately broadened by
 - Galactic rotation
 - interstellar turbulence

- 60Fe supernova model yields are too low

- 44Ti from Cas A: Broad Line?

- Positron annihilation occurs in
 - a symmetric bulge-like region around the Galactic Center
 - a warm, partly-ionized medium